Market Feedback: Who Learns What?

Itay Goldstein Jan Schneemeier and Liyan Yang

Discussion by Savitar Sundaresan Imperial College

January 5, 2021

- Why I liked this paper:
 - Nice laboratory to explore information substitutability vs complementarity
 - Tractable, with closed form solutions.
 - Intuitive assumptions and setup.
 - Very interesting results
- Where I struggled:
 - An explosion of conditional cases
 - Intuition for main mechanisms

• Firm:

- Free signal about F with probability ω
- $\bullet\,$ Can then see F perfectly OR get a shot at M with probability $\delta\omega$
- Each trader can see F or M perfectly. Trades 1, 0, or -1.
- Noise traders demand $z \sim U[-1, 1]$.
- Market maker sets price such that P = E[V|Y]

- Price is an increasing step-function in demand
- Traders buy on H and sell on L
- If $\kappa > 0$ firm invests on any *H* OR if *P* high enough.
- If $\kappa < 0$ firm invests if both signals are \emptyset or H, and P high enough.

 $\kappa > 0$

 $\kappa > 0$

- Firm wants to learn about a different factor than traders.
 - If $\kappa > 0$, H is sufficient. If L, wants second opinion.
 - If $\kappa < 0$, L is sufficient. If H, wants second opinion.
- Traders' best responses depends on κ :
 - If $\kappa > 0$ firms increasing probability of seeing F is matched by traders.
 - If $\kappa < 0$ firms increasing probability of seeing F causes traders to shift to M.

- Discrete variables: s_1 , s_2 , a, θ_M , θ_F , P, etc.
- Proof of Equilibrium is 19 pages long!
- The word 'if' is used over 200 times in one proof.

- Suppose that $\omega \rightarrow 1 \text{ AND } \delta \rightarrow 0.$
- Firm has no information strategy. Always sees F perfectly. Never sees M.
- Traders' best responses do not qualitatively change.
- Still want to align with firm when $\kappa > 0$ and differ when $\kappa < 0$.

 $\omega
ightarrow$ 1, $\delta
ightarrow$ 0, $\kappa >$ 0

- Prior is that firm *should* invest.
- Aligning lets traders match firm action (go long when investing and vice-versa).
- Main downside of aligning is if firm sees L, and M is high.
- Therefore, traders will split, but on the margin, will favor aligning.

 $\omega
ightarrow$ 1, $\delta
ightarrow$ 0, $\kappa <$ 0

- Prior is that firm *should not* invest.
- Differing gives traders best chance to change firm's mind.
- Main downside of differing is if firm sees L, and M is high.
- Traders again will split, but on the margin will favor differing.

What if $\omega < 1$, $\delta \rightarrow 0$?

- Firm still never sees M, and sometimes doesn't see F (depending on q)
- If firms get no information, traders split between the signals.
- Therefore, increasing the odds of the firm getting \emptyset tilts best response towards $\frac{1}{2}$.

What if $\omega < 1$, $\delta > 0$?

- Firm can see either M or F (worse at seeing M)
- As δ increases, and q decreases:
 - Firms information between the two factors is close to even as δ close to 1.
 - Traders more likely to split between the two factors.
 - Therefore: Increasing δ similar effect on traders to reducing ω !

- Turns out prior beliefs matter a lot!
 - When prior is to invest, traders want to be on same page as firm.
 - When prior is not to invest, traders want to change firm's mind.
- Including firm information choice changes shape but not sign of best response.